4,397 research outputs found

    Thermodynamics of pairing transition in hot nuclei

    Full text link
    The pairing correlations in hot nuclei 162^{162}Dy are investigated in terms of the thermodynamical properties by covariant density functional theory. The heat capacities CVC_V are evaluated in the canonical ensemble theory and the paring correlations are treated by a shell-model-like approach, in which the particle number is conserved exactly. A S-shaped heat capacity curve, which agrees qualitatively with the experimental data, has been obtained and analyzed in details. It is found that the one-pair-broken states play crucial roles in the appearance of the S shape of the heat capacity curve. Moreover, due to the effect of the particle-number conservation, the pairing gap varies smoothly with the temperature, which indicates a gradual transition from the superfluid to the normal state.Comment: 13 pages, 4 figure

    Neutrino mu-tau reflection symmetry and its breaking in the minimal seesaw

    Full text link
    In this paper, we attempt to implement the neutrino μ\mu-τ\tau reflection symmetry (which predicts θ23=π/4\theta^{}_{23} = \pi/4 and δ=±π/2\delta = \pm \pi/2 as well as trivial Majorana phases) in the minimal seesaw (which enables us to fix the neutrino masses). For some direct (the preliminary experimental hints towards θ23≠π/4\theta^{}_{23} \neq \pi/4 and δ≠−π/2\delta \neq - \pi/2) and indirect (inclusion of the renormalization group equation effect and implementation of the leptogenesis mechanism) reasons, we particularly study the breakings of this symmetry and their phenomenological consequences.Comment: 20 pages, 7 figures, accepted for publication in JHE
    • …
    corecore